
JOURNAL OF COMPUTATIONAL PHYSICS %, 325-338 (1991) 

df and Particle Simulations of Parametric Instabilities 

G. DIPESO AND E. C. MORSE 

Department of Nuclear Engineering, 
University of California, Berkeley, California 94720 

AND 

R. W. ZIOLKOWSKI* 

University of California, 
Lawrence Livermore National Laboratory, 

Livermore, California 94550 

Received March 23, 1990; revised August 30, 1990 

The Sf and particle simulation methods are presented and compared for parametric 
instabilities in a 1D unmagnetized plasma. The Sf simulation method used here is based on 
the linearized Vlasov equation. The simulation growth rates from both methods roughly agree 
with growth rates obtained from a fluid theory. Doubling the number of characteristics in the 
Sf simulations does not significantly alter the growth rates. Doubling the number of particles 
in the particle simulation does alter the growth rates indicating that particle noise is inter- 
fering with the physics. The 6fsimulation method was also compared to Vlasov theory for 
parametric instabilities in a 1D magnetized plasma. The simulations generally agree with the 
theory. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The theory of parametric instabilities has been developed for homogeneous 
plasmas [l-3] and inhomogenous plasmas [4, 51. Computer simulation has been 
used to study parametric instabilities in homogeneous plasmas [6,7], both 
magnetized and unmagnetized. Many theoretical calculations require simplifying 
assumptions to develop tractable dispersion relations. For example, Porkolab 
assumed relatively weak coupling in his derivation of a dispersion relation for 
parametric instabilities in a homogenous, magnetized plasma [2]. Tractable disper- 
sion relations are necessary if one wants to study more complicated cases such as 
instabilities in the presence of plasma inhomogeneities [S]. Computer simulations 
do not require such assumptions and can be readily extended to more complicated 
cases such as a lower hybrid pump propagating through a compact torus [8]. 

6fsimulation is a relatively new method that has been used to reduce stochastic 
orbit effects in linearized FRC tilt mode simulations [9] and to reduce particle 
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noise in simulations with realistic fusion parameters [lo]. cs,f simulation methods 
reduce the noise inherent in particle simulations by solving for the perturbed por- 
tion of the Cif equation along characteristics determined by the particle orbits. The 
6f’s are then used to find densities and currents on a grid in space similar to the 
way particles are used in a particle simulation. Hence 6fsimulations are not to be 
confused with the solution of the Vlasov equation on a grid in X-U space [ 111. 

Here, Sf simulation is compared to particle simulation and fluid theory for ion 
acoustic parametric instabilities in an unmagnetized plasma. Since Sf simulation is 
found to work better than particle simulation, it is also compared to Vlasov theory 
for ion quasimode parametric instabilities in a magnetized plasma. Note that for 
both these instabilities, there are associated purely growing modes which are also 
simulated. The results for the ion quasimode frequency show some departure from 
Porkolab’s results at kA,, > 0.4. 

This article is divided into seven sections. In the second section, the dispersion 
relation and the Sf and particle simulation equations for parametric instabilities in 
an unmagnetized plasma are presented. In the third section, the results of the dis- 
persion relation and the simulations are given. In the fourth section, the equations 
for the @-simulation of a magnetized plasma are given and some generalizations to 
inhomogenous and collisional cases are made. In the fifth section, the method by 
which these equations are solved is presented. In the sixth section, the results of 
theory and simulation for parametric instabilities in 1D magnetized plasmas are 
given. In the seventh section, some concluding remarks are made and future code 
developments are suggested. 

2. ~JAND PARTICLE SIMULATION EQUATIONS 

Consider a one-dimensional, infinite extent, non-relativistic, unmagnetized, 
spatially homogenous plasma equilibrium with a homogenous pump wave of the 
form E0 = E cos(wOt). A linear dispersion relation has been derived for the excited 
or daughter waves using a warm two fluid (s = e, i) model of the plasma and the 
Poisson equation for the electrostatic field response [ 1 ] : 

(0’ -Of + 2ioTi)((w, - w)2 

- 033 - 2i(wo - 0) T,)((o, + co)2 -co,’ + 2i(o, + co) r,) 

- ; k2e2 z ((o. - co)* + (co,, + CB)~ - 20; + 4~~) = 0, 
I 

where w = wk + io, and superscript I indicates a daughter wave with a frequency 
near the ion acoustic frequency. w, is the Langmuir frequency, wi is the ion acoustic 
frequency, and r, is a Landau damping term added ad hoc to the fluid theory. All 
of these terms depend on the wave number k. o, oO, o,, r, are normalized by wpp, 
k is normalized by IzDp, and s0s2/2 is normalized by n,m,v~,/2. Note that all excited 
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modes grow with 0,. A graph of oI vs k contains a branch for the ion acoustic 
parametric instability and another branch for the purely growing modes. This is 
shown by the theory line on Fig. 3. 

Simulation equations based on the previous physical picture can be used to 
include kinetic effects directly without resorting to ad hoc damping. Furthermore, 
the nonresonant kinetic effects will be resolved and there is no need to develop a 
closure for the fluid equations. The Sf and particle simulation equations will now 
be presented in greater detail since it is a new method. 

The 1D Vlasov-Poisson model of a two species plasma is 

a,~+va,~+~(~,+~)a,f,=o, 
s 

E= -a,b, 

where E, is again the pump wave. Since the plasma is neutral without perturba- 
tions, the response terms 4, E, and ps are due to the daughter waves and will now 
be known as 84, 6E, and &I,. Now, f, is written as 

L=fos(v)+vs(~~ 03 t). (5) 

Substituting the above form off, into the Vlasov equation and ignoring Sf terms 
gives equilibrium and linearized perturbed equations: 

(6) 

(7) 

The solution of Eq. (6) is simply 

fos(u)=Cexp --$ v-$$sin(o,r) 
[ ( 

2 

ts s 0 )I 3 (8) 

where the Maxwellian form of the solution is used and C is a normalization 
constant. 

The Sf simulation method solves Eq. (7) along the nth characteristic or 
unperturbed orbit: 

C,=4”Eo. 
m, 

(9) 

(10) 
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The nth Sf, is modified along the nth characteristic as 

where 6E(x,,) is weighted from a grid in space to the characteristic and 3,foS(uSn) 
is known analytically. 

Next, J dv Sf, is computed on a grid to solve the Poisson equation. At the jth grid 
point 

Note that the integration over v is understood to 
f =fos, n, = n,, = n, (initially neutral plasma). The 
sum as 

(12) 

be from -cc to co. At r =O, 
integral is approximated by a 

(13) 

where dA, is a small piece of phase space area associated with the nth charac- 
teristic of species s. 

The summation is done over all characteristics that contribute to the density at 
j and W is a normalized weighting from the characteristic to the grid. Let 
C,,j Wj= Ncsj, where N,, is the number of characteristic of species s initially 
contributing information to grid point j. Then 

Axn, 
dAsn = fos,, N,,’ (14) 

dA,, is a constant phase space area by Liouville’s theorem. At t > 0, the integrals 
in the Poisson equation are approximated by 

(15) 

Note that integrating (6f/fo), may be achieved by dividing Eq. (11) by fosn which 
is a constant of motion along the characteristics given by Eqs. (9) and (10). 
Poisson’s equation is then solved for ~54 and a finite difference technique is used to 
find 6E. The infinite extent plasma allows the use of periodic boundary conditions. 

Standard methods of particle simulation proceed by following particles along 
their exact orbits: 

is” = V&x” 3 (16) 

fiSX” = c (Eo + ~E(x,,)), (17) 
F 
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where in Eq. (17), 6E(x,,) is again computed by weighting 6E defined on a grid in 
space to the particle position x,,. Then, the perturbed electron density is formed on 
the grid in space: 

(18) 

where Wj is a normalized weighting from the particle to the grid. Poisson’s equa- 
tion is again solved for S@ and a finite difference technique is again used to find 6E. 

Both methods can be generalized to multidimensional magnetized inhomogenous 
plasmas. Sf simulation need not be linearized [lo] although it is more easily 
linearized than particle simulation [9]. One disadvantage of 6.f simulation is that 
there is one extra equation per characteristic (particle), i.e., the evolution of Sf: 
Another disadvantage of Sf simulation is that f. may not be analytically known 
making it difficult to calculate the velocity derivatives off0 necessary to advance Sf 
as in Eq. (11). This will be elaborated upon in Section 4. The advantage of Sf 
simulation is that it has better signal to noise characteristics since Sf is solved 
directly. At this time, there is no rigorous proof of this effect. 

Particle simulation of the parametric instability was done using ESl, a standard 
particle simulation program for 1D electrostatic plasmas [12]. In these simulations, 
particles were initially loaded uniformly in space and Maxwellian in velocity using 
the quiet start technique. The orbit equations were integrated using a leapfrog 
mover and the Poisson equation was solved using fast Fourier transforms. The 
instabilities were started in ES1 by a small sinusoidal displacement in particle 
position which produced a small 6E at t = 0. 

6fsimulation of the parametric instabilities was done using PARl, which is based 
on ESl, but solves the (dflfo), equations instead of the orbit equations. The equa- 
tions were integrated using an explicit Euler scheme. A time centered method for 
the magnetized simulations will be presented in Section 5. The characteristic equa- 
tions were solved analytically for the present model. The characteristics were loaded 
as the particles were loaded in ES1 and the Poisson equation was solved using the 
same routine. PAR1 is normalized according to the normalizations introduced for 
Eq. (1) and equivalent input parameters were calculated for ESl. The instabilities 
in PAR1 were started by a small sinusoidal displacement in the Sj’s to produce an 
identical 6E at t = 0. 

3. INSTABILITY RESULTS: 1D UNMAGNETIZED PLASMA 

The instability was simulated for the parameters T,/T,= 30, m,/mi = 0.001, 
00 = 1.04, E = 0.5, and 0.07 d k < 0.25 in normalized units (cf. Eq. (1)). The system 
length was taken to be equal to the wavelength corresponding to each k. Figures 1 
and 2 show particular simulations at k = 0.13 and k = 0.19. The ES1 signal in time 
domain was taken from the mode 1 field energy, since the total field energy was 
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FIGURE 1 

very noisy making it difficult to measure the growth rate of the instability. The 
PAR1 signal in time domain was taken from the total field energy. For both figures, 
the ES1 simulations appear to change more than the PAR1 simulations as the 
number of particles (characteristics) is doubled. The noise in the ES1 simulations 
appears at the onset of instability, i.e., at the point where one measures the linear 
growth rate, and at the nonlinear saturation of the instability. This indicates that 
PAR1 gives a cleaner picture of the instability and the noise in ES1 occurs in the 
linear and nonlinear stages of the instability and is due to the particles. The 
amplitude of 6E for all starting perturbations was 0.01. Smaller perturbations gave 
noisy results in ES1 at the onset of instability making even mode 1 field energy 
measurements difficult. 

Figure 3 gives the growth rates for the various k. In simulations for k 2 0.13, the 
number of grids cells was 256. Runs were made with 8192 and 16,384 particles 
(characteristics). For k < 0.13, the number of grids and particles (characteristics) 
were doubled in all runs to accommodate longer system lengths associated with the 
smaller k. All simulations were run for 4096 time steps of length 0.2. The theory 
curve was drawn using Eq. (1). 

ES1 and PAR1 simulations agree roughly with theory and show purely growing 
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modes at k > 0.15. The ES1 simulation growth rates change for doubled particles 
whereas the PAR1 simulation growth rates remain about the same for doubled 
characteristics. It should be noted that the theory is based on a fluid model with 
resonant kinetic effects added in ad hoc so exact agreement between theory and 
kinetic simulations should not be anticipated. 

4. @"SIMULATION EQUATIONS FOR A MAGNETIZED PLASMA 

The Sf simulation equations will be presented for the physical model shown on 
Fig. 4. For this 1D 3-u model, x=(x, 0,O) and v= (u,, vY, u,). The external 
magnetic field has a tilt B,= (&,, 0, B,,) so that k, and k,, are included. 
Relativistic and collisional effects are ignored. The response to the pump wave is 
assumed to be electrostatic. The homogeneous plasma has infinite extent implying 
periodic boundary conditions for the solution of the Poisson equation. The Vlasov- 
Poisson model of a two species plasma is 

~~S,+%v,,+~(E,,,+ E+vx B,).V, f,=O, (19) 

E = (k,, 0,O) = -V,d, (20) 

(21) 

where E,, is the pump wave. For the dipole pump of Fig. 4, E,, = 
(0, &y cos(%t), 0). 

FIGURE 4 
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Since the plasma is neutral without perturbations, the response terms 4, E, and 
ps are due to the daughter waves and will now be known as 64, 6E, and 6p,. Now, 
f, is written as 

“L =fos(v) + 4m~ VT t). (22) 

Substituting the above form off, into the Vlasov equation and ignoring 66 terms 
gives equilibrium and perturbed equations: 

atfo, + 2 (J&mp + v x B,) .V,fo, = 0, 
s 

athfs + u,V,dfs + F (E,, 
s 

+vxB,).V$f,= -:SEV,f,. 
s 

(24) 

The V, fos term is missing from Eq. (23) because of the assumed homogeneity. 
The Sf simulation method solves Eq. (24) along the nth characteristic or 

unperturbed orbit: 

i sn = 2 (E,, + vm x JM 
s 

The nth Sf, is moditied along the nth characteristic as 

(27) 

where 6E(x,) is weighted from a grid in space to the characteristic. Due to the 
homogeneity of B,, and E,,, the characteristic Eqs. (25) and (26) can be solved 
analytically. For inhomogenous plasmas and pumps, these equations can be solved 
numerically. 

If at t = 0, fo,(v) = F,(v), where F, is a Maxwellian, then the solution of Eq.123) 
is 

fos(v) = Fs(v - vd, (28) 

where vd is the time dependent velocity drift due to E,,. With fos analytically 
known, V, fos may be evaluated for any v at any t. For inhomogenous plasmas and 
pumps, an analytic solution for fos and hence V, fos will usually not exist even if fos 
is known analytically at t = 0. It may be possible to construct some analytic form 
for V, fos or it may be necessary to solve the derivatives of Eq. (23) numerically. 
Applying V, and V, to Eq. (23) (with the V,fO, term restored) will generate 
equations which may then be solved numerically along the characteristics to obtain 
V,fo*. 
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Next, the perturbed particle density is computed on the grid as outlined in Sec- 
tion 2. Collisional effects may be added by modifying dA.. some appropriate way 
and adding a collisional term to Eq. (24). Poisson’s equation is then solved for S# 
and a finite difference technique is used to find 6E. Sf simulation of the parametric 
instabilities for the model on Fig. 4 was done using the code PARM which is based 
on PAR1 introduced in Section 2. In the next section, the numerical details of the 
PARM code are discussed. 

5. METHOD OF SOLUTION 

The Sf evolution Eq. (27) may be written as 

4f (f) 2 4+fos 
OS n 

= - : 6E,(x,,) - 
J fos (VA (29) 

x, and v,, are known analytically, but (Sf/fo)n must be pushed. A time centered 
trapezoidal push from time step m to m + 1 based on Eq. (29) is given by 

(?jy;+’ = ($L), At + y w3x:) cYv3 

+~6E:‘+‘(x,+‘)g”tl(v_i’), 

where g,(v,) = - (qJm,) ~Jos/fos(vsn) is known analytically. 
Substituting Eq. (30) into the Poisson equation at grid point j, time step m + 1 

gives 

?$I, W,(n:.,il)6E,+1(X,+‘)g,+1(V,+1)), (31) 
c-?J n,J 

where 1: is the explicit part (m terms) of Eq. (30). 
Using nearest grid point (NGP) weighting from the characteristic to the grid and 

the grid to the characteristic, Wj = 1.0 and the time step m + 1 field that pushes any 
particular ( 6f/fo)n comes from a grid point to which that (dflf,), will be weighted. 
The 6E term in Eq. (31) may be then removed from Cn, j making the iterations 
easier. If linear weighting was used, the 6E term could still be removed, but then 
there would be Cn,j, Cn,j+ 1, and C,, jp i terms. For two spatial dimensions, there 
would be 10 summations. One drawback to NGP is that it is noisier than linear 
weighting. Another drawback is that NGP is of order 1. The Poisson solver, 
accurate to Ax*, and the Sf solver, accurate to At*, are both of order 2 but the use 
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of NGP to couple these equations together may reduce overall accuracy. However, 
the faster NGP method is used. 

Equation (31) then becomes an iterative Poisson equation: 

(32) 

This can be solved iteratively in conjuction with the definition 6E, = -i?,&j. 
The sequence to advance the system of equations would then be: 

9 Advance the characteristics. 
l Calculate the sums on the RHS of Eq. (32). 
l Iteratively solve Eq. (32) and the defining equation for JE,. Typically only 

two or three iterations are necessary for convergence. The dE, at the previous time 
step is used as an initial guess. 

l Advance x3,,. 

6. INSTABILITY RESULTS: 1D MAGNETIZED PLASMA 

The instabilities were simulated for the parameters TJT, = 3, m,/mi = 5.43 x 10p4, 
o0 = 0.0282, w, = 1.71, E,, = 0.120, and 0.05 <k < 0.6 in normalized units (cf. 
Eq. (1)). The system length was taken to be equal to the wavelength corresponding 
to each k. Figure 5 illustrates simulations for k =0.3 (ion quasimode) and k=0.15 
(purely growing mode). The signal in time domain for PARM is taken from the 
field energy. For the ion quasimode, the frequency spectrum shows the lower 
sideband and the ion quasimode frequencies as peaks from right to left. For the 
purely growing mode, the frequency spectrum shows only a frequency near the 
pump as the center peak. 

Figure 6 contains the results of the simulations. For all runs, the time step was 
1.0. For k > 0.2, 8192 characteristics per species and 256 grid cells were used. For 
k < 0.2, longer wavelengths needed to be resolved. Hence, the number of grid cells 
and the number of characteristics were both quadrupled. Figure 6 also contains the 
results from theory, i.e., the results from Fig. 3b of Ref. [3]. The derivation of this 
theory is well described in Refs. [2, 33 and, like the simulations, is based on the 
Vlasov-Poisson system of equations. 

A disagreement between simulation and theory occurs for k20.4. In this range, 
simulation indicates that the ion quasimode frequency remains locked at 
wR/oO = 0.206, where as theory says, that the frequency should decrease. To check 
the simulations, runs were made with a time step of 0.5, 1024 grid cells, and 49,152 
characteristics per species for k = 0.5 shown on Fig. 7 and for k =0.6 shown on 

581/96/2-l 
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Fig. 8. These results are similar to the results used to produce the k = 0.5, 0.6 points 
on Fig. 6 (these runs are also shown on Figs. 7 and 8). The theory is valid for any 
k up to and including p - 1, where p= Eo,k/(w,.,oo) is the coupling coefficient 
defined in Ref. [3] but recast in normalized-units (cf. Eq. (1)). For the parameters 
used in the simulation, p > 1 for k > 0.4 so the theory should be valid. It should be 
noted that, although there is a discrepancy in the ion quasimode frequency, the 
quasimode growth rates given by theory and simulation agree well. 

7. CONCLUSION 

Sj- and particle simulations have been compared to theory for parametric 
instabilities in a 1D unmagnetized plasma. There is a rough agreement between 
theory and simulation but this may be expected, since the theory is basically a fluid 
model. The Sf simulations give a cleaner picture of the instabilities and were there- 
fore used to simulate parametric instabilities in a 1D magnetized plasma. For this 
case, the simulations generally agreed with theory since the theory is a Vlasov- 
Poisson model. 

Ultimately, a Sf simulation code for plasma response will be tied into a ray 
tracing code for the pump wave propagation. In this manner, the onset of 
parametric instabilities can be studied in more complicated situations such as 
the heating of compact toroids with Gaussian pulsed RF around the lower hybrid 
frequency. The difficulty in using Sf simulation is the lack of an analytic fo. The 
brute force method outlined in Section 4 to overcome this problem may be numeri- 
cally prohibitive. However, a particle method may also be numerically prohibitive 
in that a large amount of particles would be needed to overcome statistical noise 
in order to clearly see the competing effects of a moving pump wave and plasma 
and pump wave inhomogeneities. A computational cost comparison between Sf 
and particle simulation should be done to verify savings in CPU time in using Sf 
simulation versus particle simulation with the condition that both codes achieve the 
same effectiveness. 
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